मुख्य पृष्ठ ~ हमारे बारे में ~ रसायन विज्ञान ~ संसाधन ~ डाउनलोड ~ अस्वीकरण ~ संपर्क ~ अद्यतन ~ शब्दावली

एन्ट्रॉपी

ऊष्माHeatगतिकी में, एन्ट्रॉपी एक भौतिक राशि है जो सीधे मापी नहीं जाती बल्कि गणना (कैल्कुलेशन) द्वारा इसका मान निकाला जाता है। इसका प्रतीक S है। किसी निकाय की कुल ऊर्जाEnergy का वह भाग जिसे उपयोग में नहीं लाया जा सकता (दूसरे शब्दों में, कार्य में नहीं बदला जा सकता), उस निकाय की एन्ट्रॉपी कहलाती है। एण्ट्रॉपी की गणितीय परिभाषा नीचे दी गयी है। जर्मनी के गणितज्ञ एवं भौतिकशास्त्री रुडॉल्फ क्लासिअस ने १८५० के दशक में एन्ट्रॉपी की संकल्पना दी और उसका यह नाम दिया। १८७७ में लुडविग बोल्ट्जमान ने एन्ट्रॉपी की प्रायिकता पर आधारित परिभाषा दी।

ऊष्मागतिकी उष्मागतिकी के द्वितीय नियम द्वारा भी एक नए संकल्पना (कॉसेप्ट) का समावेश होता है। यह एंट्रापी की संकल्पना है। अन्य संकल्पनाओं की अपेक्षा अधिक अमूर्त होने के कारण इसको समझना भी अधिक कठिन है। एण्ट्रॉपी के बारे में मुख्य बातें नीचे दी गयीं हैं-

  1. एन्ट्रॉपी एक भौतिक राशि है, जिसकी गणना की जा सकती है।
  2. मोटे तौर पर यह किसी ऊष्मागतिक निकाय के अव्यवस्था (disorder) की माप है।
  3. किसी विलगित निकाय की एण्ट्रॉपी समय के साथ बढती ही रहती है, कभी घटती नहीं है। (अविलगित निकायों की एंट्रॉपी घट सकती है।)
  4. एंट्रॉपी, निकाय के स्टेट का एक फलन है।
  5. एण्ट्रॉपी एक विस्तारात्मक गुण (extensive properties) है।

ऊष्मागतिकीय रूप से व्युत्क्रमणीय किसी निकाय के लिये एन्ट्रॉपी में परिवर्तन (ΔS) निम्नलिखित सम्बन्ध द्वारा पारिभाषित है-

${\displaystyle \Delta S=\int {\frac {dQ_{\text{rev}}}{T}}}$, जहाँ T निकाय का परम ताप है, dQ निकाय को दी गयी ऊष्मा है।

एण्ट्रॉपी की यह परिभाषा कभी-कभी 'व्यष्टिगत परिभाषा' (macroscopic definition) कहलाती है। ध्यान दें कि यह 'एण्ट्रॉपी में परिवर्तन' ( ΔS) की परिभाषा है, न कि कुल एण्ट्रॉपी (S) की। एण्ट्रॉपी की संकल्पना बहुत उपयोगी पायी गयी है और इसकी कई अन्य परिभाषाएँ और भी हैं। आगे चलकर निरपेक्ष एण्ट्रॉपी (absolute entropy S) की परिभाषा भी की गयी जो सांख्यिकीय यांत्रिकी पर आधारित है या ऊष्मागतिकी के तृतीय नियम पर।

यदि किसी प्रक्रिया में ताप अपरिवर्तित हो (समतापी प्रक्रम) तो

${\displaystyle S_{2}-S_{1}={\begin{matrix}{\cfrac {Q_{1\to 2}}{T}}\end{matrix}}}$

मूलभूत ऊष्मागतिक सम्बन्ध

${\displaystyle dU=TdS-PdV}$ आदर्श गैसIdeal gas के लिये एन्ट्रॉपी की उपरोक्त परिभाषा तथा आदर्श गैस के समीकरण का उपयोग करते हुए निम्नलिखित सम्बन्ध निकाला जा सकता है-

${\displaystyle \Delta S=\Delta (c_{V}\ln p+c_{p}\ln V)\,} $ या,

${\displaystyle \Delta S={\frac {nR}{\gamma -1}}\Delta (\ln p+\gamma \ln V)}$ जहाँ ${\displaystyle \gamma ={\frac {c_{p}}{c_{V}}}\,}$ ( = 5/3 एकपरमाणुकMonoatomic गैस के लिये, तथा 7/5 द्विपरमाणुकDiatomic गैस के लिये)

एन्ट्रॉपी की सांख्यिकीय व्याख्या

१८९० से १९०० की कालावधि में आस्ट्रिया के भौतिकशास्त्री लुडविग बोल्ट्जमान और अन्य वैज्ञानिकों ने सांख्यिकीय यांत्रिकी का विकास किया। इसने एन्ट्रॉपी की संकल्पना को बहुत प्रभावित किया। एन्ट्रॉपी और ऊष्मागतिकीय प्रायिकता में निम्नलिखित सम्बन्ध दिया गया है-

${\displaystyle S=k\cdot \ln \Omega }$, जहाँ S एन्ट्रॉपी है, k बोल्ट्जमान नियतांक है, Ω निकाय के सभी सम्भव सूक्ष्म-स्टेट्स (microstates) की संख्या है।


Copyright © 2007 - 2019 सर्वाधिकार सुरक्षित. Dr. K. Singh | Organic Synthesis Insight.